# Combinations of Anti-cancer Immune Therapies Built on Checkpoint Inhibition

Combination Approach in Cancer SITC 28th Annual Meeting November 10, 2013 Gaylord National Hotel & Convention Center National Harbor, MD

### B7-H1/TIL correlation in melanoma

Janis M. Taube,<sup>1,2</sup>\* Robert A. Anders,<sup>2</sup> Geoffrey D. Young,<sup>3,4</sup> Haiying Xu,<sup>1</sup> Rajni Sharma,<sup>2</sup> Tracee L. McMiller,<sup>4</sup> Shuming Chen,<sup>4</sup> Alison P. Klein,<sup>2,5</sup> Drew M. Pardoll,<sup>5</sup> Suzanne L. Topalian,<sup>4</sup>\* Lieping Chen<sup>1,5,6</sup>\*

|            |                               |       |             | Number of cases/total cases (%) |            |                    |         |  |
|------------|-------------------------------|-------|-------------|---------------------------------|------------|--------------------|---------|--|
| Histology  | ,                             | Total | B7-H1       | B7-H1 <sup>+†</sup>             |            | B7-H1 <sup>−</sup> |         |  |
|            |                               |       | TIL**       | TIL⁻                            | TIL+       | TIL⁻               |         |  |
| Benign ne  | vi                            | 40    | 14/14 (100) | 0/14 (0)                        | 4/26 (15)  | 22/26 (85)         | <0.0001 |  |
| Primary m  | elanomas (in situ or invasive | e) 54 | 19/19 (100) | 0/19 (0)                        | 15/35 (43) | 20/35 (57)         | <0.0001 |  |
| Metastases | j                             | 56    | 23/24 (96)  | 1/24 (4)                        | 7/32 (22)  | 25/32 (78)         | <0.0001 |  |
| All        |                               | 150   | 56/57 (98)  | 1/57 (2)                        | 26/93 (28) | 67/93 (72)         | <0.0001 |  |

# Immune Profile- Tumor/Host

- Assessment of T cell infiltrate (yes/no)
  - Location of T cell infiltrate and quantity
  - T cell phenotypes (CD8, CD4, Treg, CD8/Treg ratio)
  - T cell cytokine production (TH1 versus Th2)
  - Inflammatory gene signatures (stratify?) + Chemokine profile
  - T cell health anergy or exhaustion (multiple markers to include PD-1, BTLA, TIM3, LAG3, CD80, others)
  - T cell antigen specificity (by expression of CD137 or OX40)
- Checkpoints/Inhibitors by tumor or infiltrating cells (protein level)
  - PD-L1, PD-L2, B7-H3, B7-H4, CD200/CD200R, HLA-G, IDO, arginase, TGF-beta, IL-10, VEGF, <u>others</u>
- Other immune cells (MDSC) and phenotype/function
- Tumor HLA expression and preservation of Ag presentation
- Vasculature (integrins, PD-L1?)
- Systemic factors Cytokines, YKL-40, MICA/MICB, Treg, MDSC, Evidence of Agspecific responses
- Host genetic factors (SNPs)/PD biomarkers

#### Biological Goal of Combinations with a Checkpoint Inhibitor

- Induce Ag-specific T cells (not present before)
  - Vaccine, Release Ag with RT/targeted agent/chemoRx
- Provide more Ag-presenting cells
- Activation/Modulation of APC
  - Anti-CD40 +TLR, anti-VEGF?
- Drive T-cell expansion to expand pool of Ag-specific T cells
  - Cytokines, vaccines, co-stimulation (CD27, CD137, OX40, GITR, ICOS)
- Change a suppressive systemic (deviated) cytokine/other environment
  - Th1 cytokines, Anti-YKL-40, Reduce MICA/MICB,
- Remove other regulatory checkpoints/suppressive factors for T-cell activation/expansion in periphery (LN)
  - CTLA-4, ?
- Drive T-cells into microenvironment
  - CTLA-4, GITR, anti-VEGF, pro-inflammatory agents, targeted agents
- Expand/activate/change ratio of T-cells in microenvironment
  - Cytokines, vaccines, co-stimulation (CD27, CD137, OX40, GITR, ICOS)
- <u>Remove other checkpoints/ T-cell suppression in microenvironment</u>
  - Treg (CTLA-4), cytokines and anti-cytokines, Ido, arginase, multiple checkpoints (PD-1 pathway, other B7-H, KIR, HLA-G, CD200, TIm3, LAG3)
- Restore tumor Ag presentation

#### Problem -→ Identifying the critical deficiency(ies) in individual patients

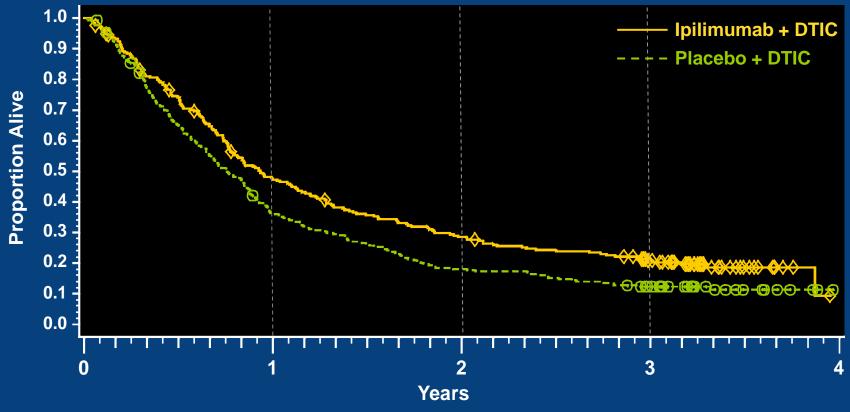
History of Immune Modulatory Combinations in the BC (before checkpoints) era

- Enormous number of phase 1 trials with cytokines, vaccines, and antibodies (ADCC)
- Most did not go beyond phase 1 or phase 2
- Very few randomized trials
- No successful randomized trials
  IL-2 + gp100 peptide vaccine?

# Endpoints for Combinations with CTLA-4 or PD-1 pathway blockade

ORR ~15% - **30-40%** iRC RR -+5-10% to ORR CR low rate but undefined CBR/DCR should never be used Aggregate clinical activity -? ? 'Deep' (> 80% regression) responses -19 months to 24 months Median duration of response – Median PFS -< 4 months 1-year and 2 year PFS – 25/10% to 36/27% 3 year PFS ? Median Survival – 10-12 to **16.8 months** 1- year and 2-year survival 47/29% to 62/43%

Data apply to metastatic melanoma, may vary by prior Rx


## Immune Modulatory Combinations – Ground Rules

- Compared to single agent:
  - Potentially different toxicity and activity profile
  - Not necessarily amplification or addition to single agent profile
  - May not follow single agent predictive or PD biomarker profile
- Should not undertake combination unless:
  - Compelling rationale (biology, correlative study, preclinical data)
  - Clear/`meaningful' prospective criteria for go-no go decision in phase 1-2
  - Expect large increase in overall activity in unselected populations (high signal gain) or
  - Selection criteria for populations with defined expected activity (combination addresses specific biology), and/or
  - Commitment to conduct appropriate phase 2 and randomized trials to establish superiority of combination to single agents
  - Otherwise -fugheddaboutit

# **Anti-CTLA4 Combinations**

- <u>Chemotherapy (DTIC, Temozolomide, Fotemustine, CBDCA/paclitaxel)</u>
- Radiation
- Targeted Agents
  - BRAF inhibitors (Vemurafenib, dabrafenib +/- trametinib)
  - Other small molecule targeted agents
  - Antibodies against signaling receptors (EGFR?)
- Vaccines (long peptides, whole proteins, cells)
- Cytokines or anti-Cytokines (IL-2, Interferon-alfa, GM-CSF, IL-15, IL-12, IL-21, Anti-TGF-beta, others)
- Anti-angiogenesis agents (bevacizumab, sunitinib)
- Anti-CD40
- Anti-PD1 or PD-L1
- IDO or arginase inhibitors
- Anti-CD137 or anti-OX40
- Anti-GITR
- Adoptive Cell Therapy?

## Study 024: Overall Survival



| Estimated<br>Survival Rate | 1 Year | 2 Year | 3 Year* |
|----------------------------|--------|--------|---------|
| Ipilimumab + DTIC<br>n=250 | 47.3   | 28.5   | 20.8    |
| Placebo + DTIC<br>n=252    | 36.3   | 17.9   | 12.2    |

\*3-year survival was a post-hoc analysis

PRESENTED AT:

ASC



# Study 024: Tumor Response

|                                 | Ipilimumab +<br>DTIC<br>n=250 | Placebo +<br>DTIC<br>n=252 |
|---------------------------------|-------------------------------|----------------------------|
| Disease Control Rate, n (%)     | 83 (33.2)                     | 76 (30.2)                  |
| BORR (CR + PR), n (%)           | 38 (15.2)                     | 26 (10.3)                  |
| Complete response               | 4 (1.6)                       | 2 (0.8)                    |
| Partial response                | 34 (13.6)                     | 24 (9.5)                   |
| Stable disease                  | 45 (18.0)                     | 50 (19.8)                  |
| Progressive disease             | 111 (44.4)                    | 131 (52.0)                 |
| Duration of response,<br>months | 19.3                          | 8.1                        |

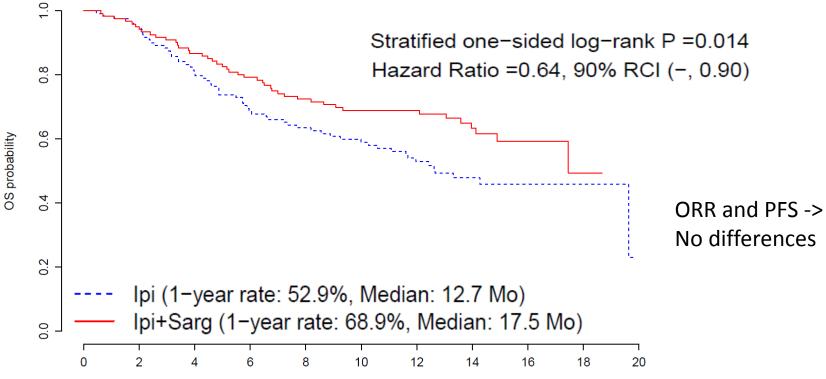
**BORR=Best Overall Response Rate** 

Patients (%) not evaluable for response (no follow-up scans): 56 (22.4) vs 45 (17.9)



### Ipilimumab 10 mg/kg + Chemotherapy Combination Results

Di Giacomo et al Patel et al


| DTIC          | Temozolor                 | nide                              | Fotemustine                            |                      |  |
|---------------|---------------------------|-----------------------------------|----------------------------------------|----------------------|--|
| 250           | N=                        | 64                                | N=                                     | 86                   |  |
| 1.6%          | CR                        | 10 (15.6%)                        | irCR                                   | 6 (7%)               |  |
| 13.6%         | irPR                      | 8 (12.5%)                         | irPR                                   | 19 (22%)             |  |
| 18%           | irSD                      | 29 (45%)                          | irSD                                   | 15 (17%)             |  |
| 15.2%         | ir (PR +CR)               | 28%                               | ir (PR + CR)                           | 29%                  |  |
| 33.2%         | DCR                       | 73%                               | DCR                                    | 40%                  |  |
| 2.8           | Median PFS<br>6-month PFS | 22 weeks /<br>5.1 months<br>45.1% | Median irPFS,<br>months (95%<br>CI)    | 5.3 (3.4-7.1)        |  |
| 47.3 (1 year) | 1-year survival rate      | TE                                | 1-year survival<br>rate, % (95%<br>Cl) | 52.6 (41.8-<br>63.4) |  |
| 11.2          | Median OS                 | TE                                | Median OS,<br>months (95%<br>CI)       | 13.3 (8.9–<br>19.9)  |  |

#### Ipilimumab Long-Term Survival Rates: Consistency Across Phase 2 Melanoma Experience

| Study<br>(10mg/kg treatment groups)                      | <b>12-month</b><br>survival rate<br>% (95% CI)     | 24-month<br>survival rate<br>% (95% CI)            |
|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| CA184-008 (N=155)<br>Previously treated                  | <b>47.2</b> (39.5-55.1)                            | <b>32.8</b> (25.4-40.5)                            |
| CA184-022 (n=72)*<br>Previously treated                  | <b>48.6</b> (36.8-60.4)                            | <b>29.8</b> (19.1-41.1)                            |
| CA184-007 (N=115)                                        |                                                    |                                                    |
| Previously treated – P (n=25)                            | <b>50.8</b> (31.5-71.1)                            | <b>24.2</b> (8.0–42.8)                             |
| Previously treated – B (n=37)                            | <b>49.9</b> (33.3-66.6)                            | <b>31.6</b> (16.5-47.6)                            |
| Treatment-naive – P (n=32)<br>Treatment-naive – B (n=21) | <b>71.4</b> (55.2-87.2)<br><b>65.9</b> (45.0-85.7) | <b>56.6</b> (38.4-74.3)<br><b>56.5</b> (30.6-81.0) |

\* For study -022, the statistics are for the 72 patients in the 10 mg/kg arm only. CI = confidence interval. P = placebo. B = budesonide.

## **Overall Survival**



Months Since Randomization

| Number at ris | ł |
|---------------|---|
|---------------|---|

| ci at hor |     |     |    |    |    |    |    |    |   |   |              |
|-----------|-----|-----|----|----|----|----|----|----|---|---|--------------|
| 122       | 114 | 94  | 80 | 72 | 64 | 49 | 28 | 14 | 6 | 0 | trt=lpi      |
| 123       | 115 | 104 | 94 | 84 | 75 | 63 | 39 | 11 | 2 | 0 | trt=lpi+Sarg |

|                       | Arm A: Ipi+Sarg (n=123) | Arm B: lpi<br>(n=122) | Comparisons            |
|-----------------------|-------------------------|-----------------------|------------------------|
| Overall Survival (OS) |                         |                       |                        |
| - Median , (95% CI)   | 17.5 mo (14.9, NR)      | 12.7 mo (10.0, NR)    | P1*=0.014 (Stratified  |
| - 1-Year OS rate,     | 68.9%                   | 52.9%                 | Logrank test)          |
| (95% CI)              | (60.6, 85.5)            | (43.6, 62.2)          |                        |
| - HR                  | 0.64                    | Reference             | P1* =0.014             |
| 90% RCI for HR        | (-, 0.90)               |                       | (Stratified Cox model) |

# Phase 1 of Bevacizumab (10 mg/kg) + ipilimumab

- Combination produced unexpected pattern of irAEs
  - Less colitis, more endocrine (5/22 hypophysitis), 2 cases of uveitis
- Clinical response higher than expected (n=22)
  CR/PR (32%), SD> 6 months (32%)
- > CM and EM T-cell expansion compared to historical control
- Demonstrated biological effects on tumor blood vessels and angiogenic T-cell recruitment

Hodi et al, ASCO 2011

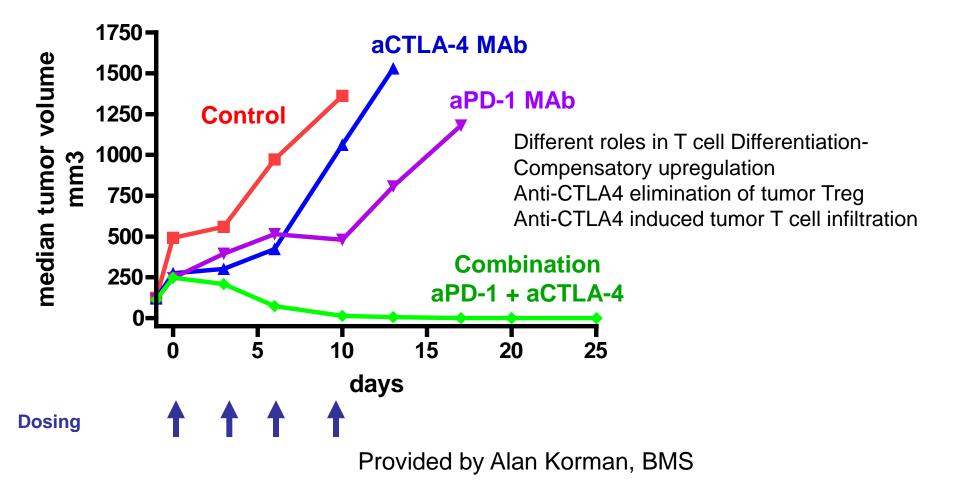
#### Summary of Clinical Activity with IFN/Tremelimumab – Tarhini et al, ASCO 2010

| and Alest                                                                                                                                                                                                                                                                                                | a the set of the   | IFN/Treme                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|--|--|--|--|
| <b>Study Size</b> (number of patients)                                                                                                                                                                                                                                                                   |                    | 37*                                   |  |  |  |  |
| Response                                                                                                                                                                                                                                                                                                 | Rate (%)           | 9/35 (26%)                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | Durability<br>(mo) | 6, 6, 12+, 14+, 18+, 20, 28+, 30, 37+ |  |  |  |  |
| SD                                                                                                                                                                                                                                                                                                       | Rate (%)           | 14/35 (40%)                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | Durability<br>(mo) | 1.5-21                                |  |  |  |  |
| <b>DCR</b> (%)                                                                                                                                                                                                                                                                                           | A CONTRACTOR       | 23/35 (66%)                           |  |  |  |  |
| PFS (media                                                                                                                                                                                                                                                                                               | n, mo)             | 6.4                                   |  |  |  |  |
| <b>OS</b> (median                                                                                                                                                                                                                                                                                        | i, mo)             | 21                                    |  |  |  |  |
| *Two patients were non-evaluable for response (no response data available)<br>*One unconfirmed responder $\rightarrow$ PD $\rightarrow$ surgery $\rightarrow$ NED (16+)<br>*One PD $\rightarrow$ TMZ/Decitabine x2wks $\rightarrow$ PD $\rightarrow$ NED<br>**One patient was non-evaluable for response |                    |                                       |  |  |  |  |

# Phase 1/2 of IL-2 + ipilimumab in metastatic melanoma

- Schedule
  - Ipi days 1, 22, 43
  - IL-2 720,000 IU/kg q8h up to 15 doses, beginning days 23 and 44
- Patients
  - 12 in dose escalation phase
  - 24 at 3.0 mg/kg of ipilimumab
- Toxicity: 5 with grade 3-4 autoimmunity
- Activity
  - Objective RR: 25%
  - CR 17% (6 patients: 77+, 74+, 72+, 71+, 71+, and 69+ months)
  - Median survival 16 months

## PD-1/PD-L1 Pathway Antagonist: Combinations


- Non-Inflamed Tumors: Expand and/or drive T-cells into microenvironment
  - Other immune therapies (anti-CTLA-4, co-stimulatory agents?, IFNs, gammachain cytokines, targeted delivery of TLR, TCR-CD3 fusion proteins)
  - Targeted agents (vemurafenib, RTKis)
  - Anti-VEGF/anti-angiogenesis
  - Epigenetic modifiers
  - Dasatinib?
  - Vaccines?
  - Adoptive T-cell therapy (TIL, CARs, or TCR-modified PBL)
- Inflamed Tumors: Other agents that block T-cell inhibitory mechanisms within tumor
  - Anti-LAG3, anti-TIM3
  - Blockade of other exhaustion molecules
  - Blockade of other B7-H family members
  - Anti-PD-L1?
  - IDO inhibitors

# PD-1 Pathway Blockade Combinations

- Ipilimumab (anti-CTLA-4) in multiple malignancies
- Tremelimumab (anti-CTLA-4)
- Vemurafenib (LFTs?)
- Dabrafenib Trametinib
- Bevacizumab
- IFNs RCC/melanoma
- Erlotinib (EGFRi) NSCLC
- Sunitinib or Pazopanib (VEGFRi) RCC
- IL-21 RCC/NSCLC
- anti-LAG3
- anti-KIR
- peptide vaccines
- Chemotherapy
- Anti-OX40

## Synergistic Activity with Anti-PD-1 and Anti-CTLA-4 Antibodies

Combination of Non-Efficacious Doses of anti-PD1 and anti-CTLA-4 Antibodies is Efficacious in Mouse Model



# Table 1. Cynomolgus monkey toxicology signal with concurrent nivolumab and ipilimumab treatment<sup>6</sup>

| Group | Male/<br>Female | Treatment               | Dose<br>mg/kg | Diarrheaª<br>n/N | Mean Spleen<br>Weight <sup>b</sup><br>Male/Female<br>Grams | Spleen<br>Pathologyº<br>n/N | Gastrointestinal<br>Tract Pathology₫<br>n/N |
|-------|-----------------|-------------------------|---------------|------------------|------------------------------------------------------------|-----------------------------|---------------------------------------------|
| 1     | 5/5             | Control                 |               | 0/10             | 3.9/2.8                                                    | 0/6                         | 0/6                                         |
| 2     | 5/5             | Nivolumab<br>Ipilimumab | 10<br>3       | 2/10             | 4.0/3.6                                                    | 2/6                         | 2/6                                         |
| 3     | 5/5             | Nivolumab<br>Ipilimumab | 50<br>10      | 4/10             | 6.1/4.05                                                   | 4/5                         | 3/5                                         |

<sup>a</sup>Incidence of repeated diarrhea

<sup>b</sup>Mean spleen weight on day 30

<sup>c</sup>Incidence of lymphoid follicle hypertrophy or marginal zone expansion

<sup>d</sup>Minimal, diffuse lymphoplasmacytic inflammation in the lamina propria with concurrent enlargement of the colonic or pelvic lymph nodes

n/N defines the number of positive observations (n) among those animals evaluated (N)

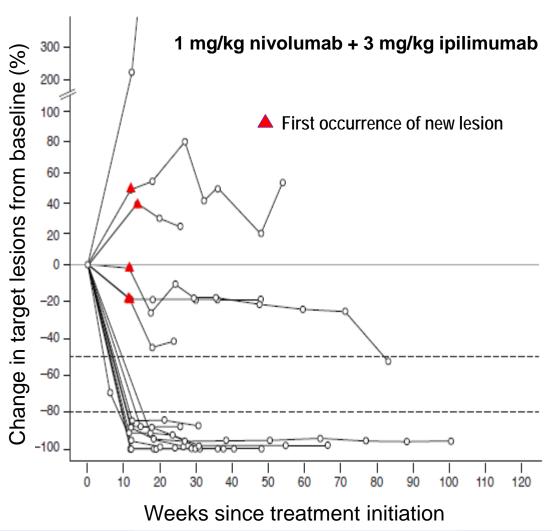
## Clinical activity and safety of nivolumab (anti-PD-1, BMS-936558, ONO-4538) in combination with ipilimumab in patients with advanced melanoma

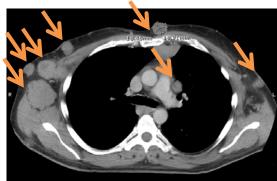
<u>Jedd D. Wolchok</u>,<sup>1</sup>Harriet Kluger,<sup>2</sup> Margaret K. Callahan,<sup>1</sup> Michael A. Postow,<sup>1</sup> RuthAnn Gordon,<sup>1</sup> Neil H. Segal,<sup>1</sup> Naiyer A. Rizvi,<sup>1</sup> Alexander M. Lesokhin,<sup>1</sup> Kathleen Reed,<sup>2</sup> Matthew M. Burke,<sup>2</sup> Anne Caldwell,<sup>2</sup> Stephanie A. Kronenberg,<sup>1</sup> Blessing U. Agunwamba,<sup>1</sup> William Feely,<sup>3</sup> Quan Hong,<sup>3</sup> Christine E. Horak,<sup>3</sup> Alan J. Korman,<sup>4</sup> Jon M. Wigginton,<sup>3</sup> Ashok Gupta,<sup>3</sup> and Mario Sznol<sup>2</sup>

 <sup>1</sup>Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, NY;
<sup>2</sup>Yale University School of Medicine and Yale Cancer Center, New Haven, CT; Bristol-Myers Squibb, <sup>3</sup>Princeton, NJ and <sup>4</sup>Redwood City, CA

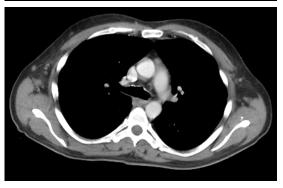
Presented at the 2013 ASCO Annual Meeting. Presented data is the property of the author.




## **Clinical Activity: Concurrent Regimen**


| Dose (mg/kg) |            | Response<br>Evaluable |         |         | Objective<br>Response<br>Rate | Aggregate<br>Clinical<br>Activity | ≥80%<br>Tumor<br>Reduction |
|--------------|------------|-----------------------|---------|---------|-------------------------------|-----------------------------------|----------------------------|
| Nivolumab    | Ipilimumab | Patients<br>n         | CR<br>n | PR<br>n | %<br>[95% CI]                 | Rate<br>%<br>[95% CI]             | at 12 wk<br>n (%)          |
| 0.3          | 3          | 14                    | 1       | 2       | 21 [5-51]                     | 50 [23-77]                        | 4 (29)                     |
| 1            | 3          | 17                    | 3       | 6       | 53 [28-77]                    | 65 [38-86]                        | 7 (41)                     |
| 3            | 1          | 15                    | 1       | 5       | 40 [16-68]                    | 73 [45-92]                        | 5 (33)                     |
| 3            | 3          | 6                     | 0       | 3       | 50 [12-88]                    | 83 [36-100]                       | 0                          |
| Conc         | urrent     | 52                    | 5       | 16      | 40 [27-55]                    | 65 [51-78]                        | 16 (31)                    |

- With 1 mg/kg nivolumab + 3 mg/kb ipilimumab, 53% of patients had confirmed objective responses (3 CRs and 6 PRs)
- All 9 of these had ≥80% tumor reduction, 7 at 12 weeks and 2 at their first assessment, which was after week 12
- ≥80% tumor reductions appear infrequently (<10%) in the nivolumab and ipilimumab monotherapy experiences




### **Rapid and Durable Changes in Target Lesions**





Pretreatment



12 weeks

Annual '13

Meeting

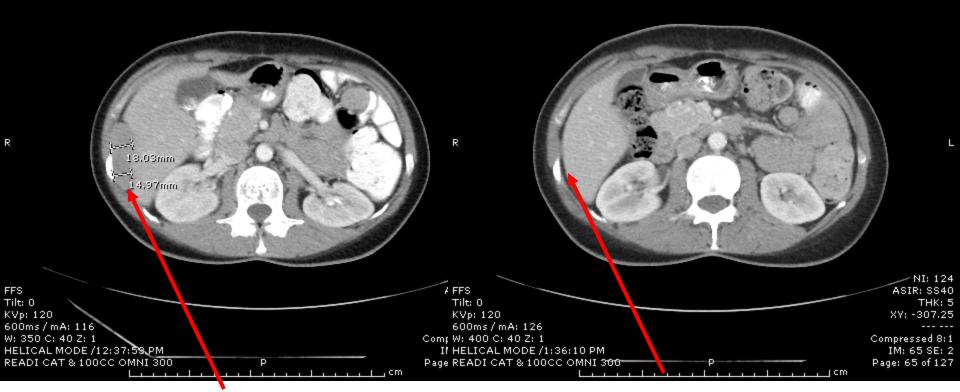
- A 52-year-old patient presented with extensive nodal and visceral disease
- Baseline LDH was elevated (2.3 x ULN); symptoms included nausea and vomiting
- Within 4 wk, LDH normalized and symptoms resolved
- At 12 wk, there was marked reduction in all areas of disease as shown

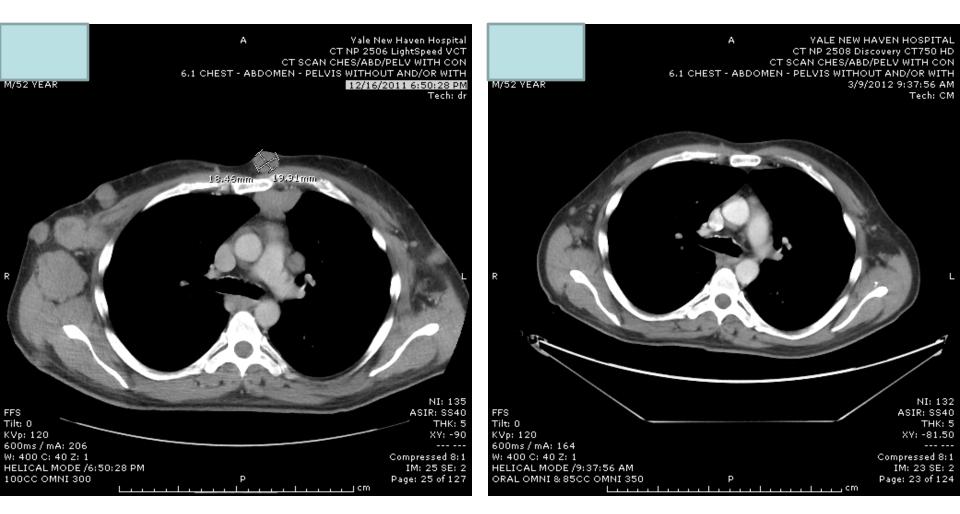
PRESENTED AT:

A Vale New Haven Hospital CT NP 2506 LightSpeed VCT CT SCAN CHES/ABD/PELV WITH CON 6.1 CHEST - ABDOMEN - PELVIS WITHOUT AND/OR WITH 4/26/2011 1:36:10 PM

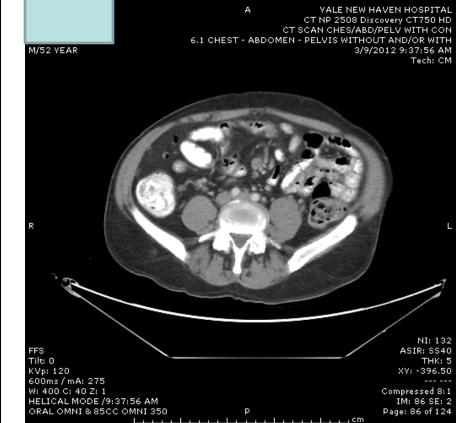
Tech: DL

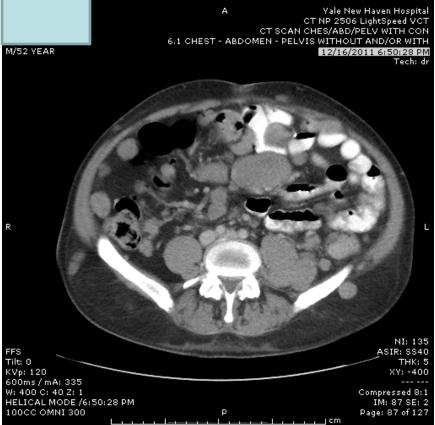
A Yale New Hav S CT NP 2506 Light L CT SCAN CHES/ABD/PELV # 6.1 CHEST - ABDOMEN - PELVIS WITHOUT ANI L 1/25/2011 12 F/43 YEAR


F/43 YEAR



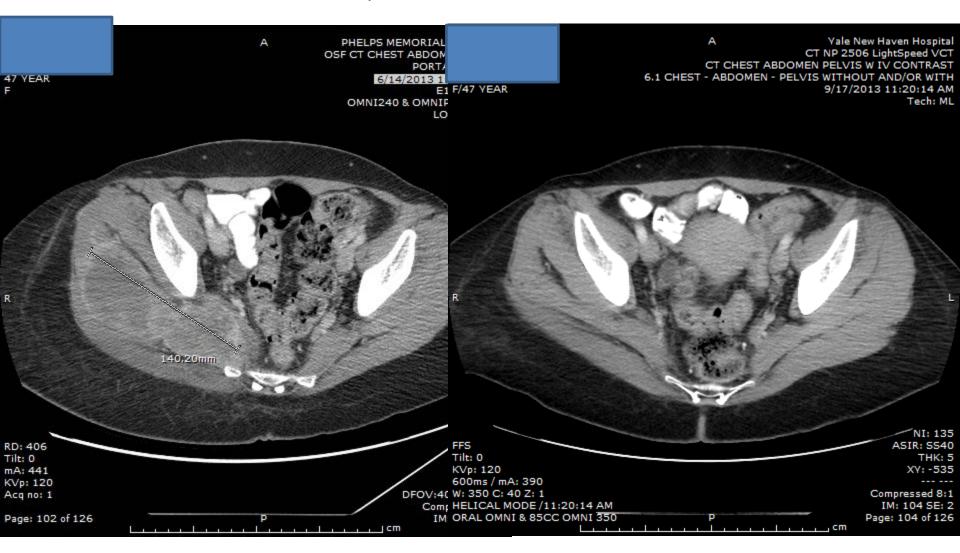

A Vale New Haven Hospital CT NP 2506 LightSpeed VCT CT SCAN CHES/ABD/PELV WITH CON 6.1 CHEST - ABDOMEN - PELVIS WITHOUT AND/OR WITH 4/26/2011 1:36:10 PM Tech: DL


A Yale New Hav CT NP 2506 Light CT SCAN CHES/ABD/PELV 6.1 CHEST - ABDOMEN - PELVIS WITHOUT ANI-1/25/2011 12 F/43 YEAR


F/43 YEAR





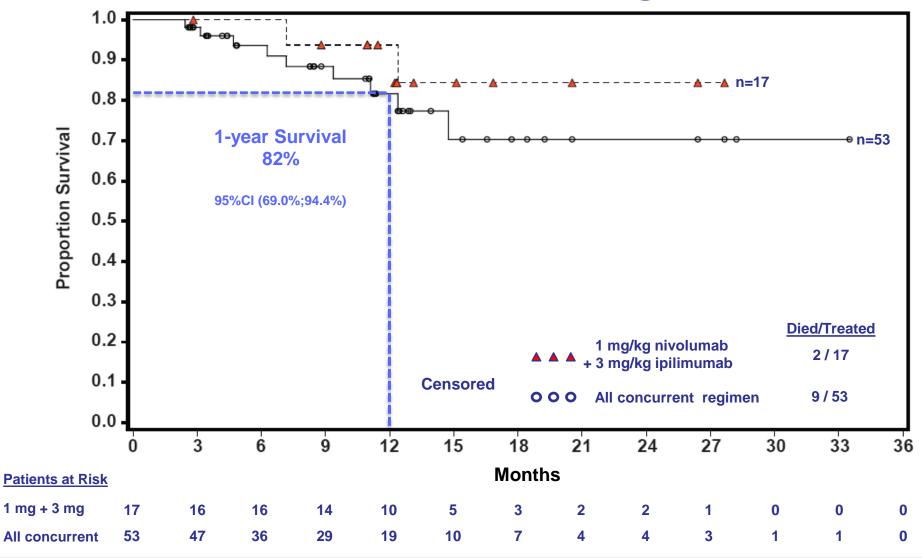









#### Cohort 8 response at 12 weeks




### Treatment-Related Select Adverse Events Occurring in ≥1 Patient

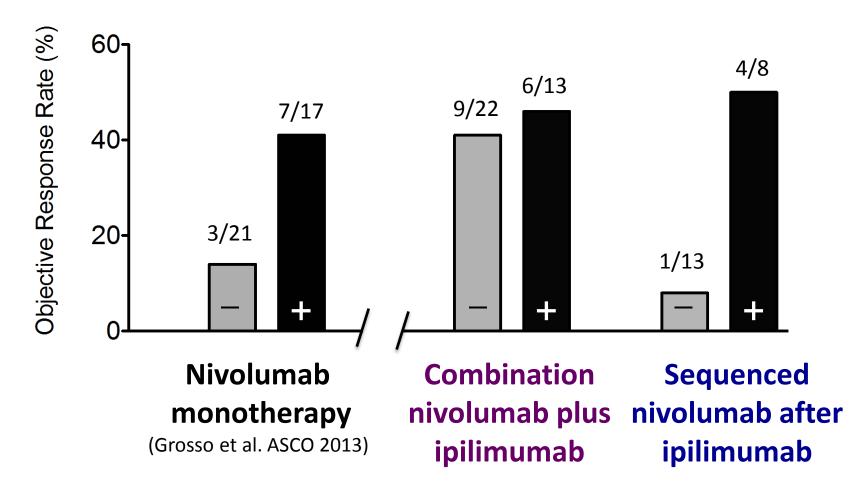
| Select<br>Adverse Event | Concurrent<br>All Cohort |        | Sequenced Regimen<br>All Cohorts (n=33) |        |  |
|-------------------------|--------------------------|--------|-----------------------------------------|--------|--|
| Number of Patients (%)  | All Gr                   | Gr 3-4 | All Gr                                  | Gr 3-4 |  |
| Pulmonary               | 3 (6)                    | 1 (2)  | 1 (3 )                                  | 0      |  |
| Renal                   | 3 (6)                    | 3 (6)  | 0                                       | 0      |  |
| Endocrinopathies        | 7 (13)                   | 1 (2)  | 3 (9)                                   | 2 (6)  |  |
| Uveitis                 | 3 (6)                    | 2 (4)  | 0                                       | 0      |  |
| Skin                    | 37 (70)                  | 2 (4)  | 8 (24)                                  | 0      |  |
| Gastrointestinal        | 20 (38)                  | 5 (9)  | 3 (9)                                   | 0      |  |
| Hepatic                 | 12 (23)                  | 8 (15) | 1 (3)                                   | 0      |  |
| Infusion reaction       | 1 (2)                    | 0      | 0                                       | 0      |  |
| † Lipase                | 10 (19)                  | 7 (13) | 4 (12)                                  | 2 (6)  |  |
| † Amylase               | 8 (15)                   | 3 (6)  | 1 (3)                                   | 1 (3)  |  |



#### Preliminary Survival of Patients Treated with the Concurrent Regimen






#### **PDL-1 Expression and Response Rate**

|                                     | N  | PDL1<br>+ Positive | PDL1<br>- Negative |
|-------------------------------------|----|--------------------|--------------------|
| Nivolumab<br>(Topalian, NEJM, 2012) | 42 | 9/25 (36%)         | 0/17 (0%)          |
| Nivolumab<br>(Weber #9011)          | 44 | 8/12 (67%)         | 6/32 (19%)         |
| MPDL3280A<br>(Hamid #9010)          | 30 | 4/15 (27%)         | 3/15 (20%)         |
|                                     |    |                    |                    |
| Nivolumab<br>(Grosso #3016)         | 34 | 7/16 (44%)         | 3/18 (17%)         |

Presented by: Walter J. Urba, MD, PhD



# Evaluating PD-L1 status as a candidate biomarker



Positivity rate = 45% (17/38, monotherapy), 37% (13/35, combination therapy), and 38% (8/21, sequenced therapy)

# Sequencing/Dose Considerations

- Variation in dose ratio may lead to improved toxicity profile?
- 3 studies confirm substantial anti-PD1 activity after PD on anti-CTLA4
- Various unpublished reports of OR to anti-CTLA-4 after PD on anti-PD1
  - $\rightarrow$  For sequence, final ORR/survival = concurrent therapy?
  - Or give combination if no response to single agents?
- Early data suggest single agents produce additional activity after combination (if stopped for toxicity)
- Non-cross resistance of therapies (TIL after PD on checkpoints)
- Sequence may alter subsequent activity/toxicity profile
  - Biological modulation
  - May avoid combined toxicity (LFTs with vemurafenib/checkpoint inhibitors)

# Immune Profile- Tumor/Host

- Assessment of T cell infiltrate (yes/no)
  - Location of T cell infiltrate and quantity
  - T cell phenotypes (CD8, CD4, Treg, CD8/Treg ratio)
  - T cell cytokine production (TH1 versus Th2)
  - Inflammatory gene signatures (stratify?) + Chemokine profile
  - T cell health anergy or exhaustion (multiple markers to include PD-1, BTLA, TIM3, LAG3, CD80, others)
  - T cell antigen specificity (by expression of CD137 or OX40)
- Checkpoints/Inhibitors by tumor or infiltrating cells (protein level)
  - PD-L1, PD-L2, B7-H3, B7-H4, CD200/CD200R, HLA-G, IDO, arginase, TGF-beta, IL-10, VEGF, <u>others</u>
- Other immune cells (MDSC) and phenotype/function
- Tumor HLA expression and preservation of Ag presentation
- Vasculature (integrins, PD-L1?)
- Systemic factors Cytokines, YKL-40, MICA/MICB, Treg, MDSC, Evidence of Agspecific responses
- Host genetic factors (SNPs)/PD biomarkers

#### Biological Goal of Combinations with a Checkpoint Inhibitor

- Induce Ag-specific T cells (not present before)
  - Vaccine, Release Ag with RT/targeted agent/chemoRx
- Provide more Ag-presenting cells
- Activation/Modulation of APC
  - Anti-CD40 +TLR, anti-VEGF?
- Drive T-cell expansion to expand pool of Ag-specific T cells
  - Cytokines, vaccines, co-stimulation (CD27, CD137, OX40, GITR, ICOS)
- Change a suppressive systemic (deviated) cytokine/other environment
  - Th1 cytokines, Anti-YKL-40, Reduce MICA/MICB,
- Remove other regulatory checkpoints/suppressive factors for T-cell activation/expansion in periphery (LN)
  - CTLA-4, ?
- Drive T-cells into microenvironment
  - CTLA-4, GITR, anti-VEGF, pro-inflammatory agents, targeted agents, ACT/TIL
- Expand/activate/change ratio of T-cells in microenvironment
  - Cytokines, vaccines, co-stimulation (CD27, CD137, OX40, GITR, ICOS)
- <u>Remove other checkpoints/ T-cell suppression in microenvironment</u>
  - Treg (CTLA-4), cytokines and anti-cytokines, Ido, arginase, multiple checkpoints (PD-1 pathway, other B7-H, BTLA, KIR, HLA-G, CD200, TIm3, LAG3)
- Restore tumor Ag presentation

#### Problem -→ Identifying the critical deficiency(ies) in individual patients

# Conclusions

- Many compelling combinations
  - But some more than others, directed by human biology
  - Strong case for developing technology to fully characterize immune tumor relationship in microenvironment
  - Animal model data useful but should be interpreted and used to support combination in context of human biology
- Current data suggest two main types of combinations
  - Multiple inhibitors of microenvironment and peripheral checkpoints
  - +/- approaches to drive Ag-specific T cells into tumor
- Many unresolved issues of sequence and dose issues
- Optimal management of patients will not follow clean protocol related rules
- Must be prepared to accept and manage more (and more severe) AEs for greater activity
- Must be committed to early randomized trials (in many cases) to verify findings/hypothesis
- Endpoints of trials may shift from median survival to 'cure rates'